
Data Integration System for Linked Open Data Space

© Kuznetcov Konstantin

Lomonosov Moscow State University
K.Kuznetcov@gmail.com

Abstract

This paper describes research-in-progress work

on data integration system in Linked Open

Data space. Proposed system uses concept of

RDF identity links to interlink heterogeneous

local data sources and integrate them into

global data space.

Academic supervisor: Vladimir Serebriakov,

serebr@ccas.ru.

1 Introduction

For the last few decades data integration has been one

of the most actual problems of computer science. With

the development of IT industry countless data sources

emerged in the Internet. These data sources are

heterogeneous in all possible ways. Effective usage of

such data sources is impossible without automatical

tools for data search, retrieval, publishing and

transformation.

The original hypertextual web didn’t suit well for

automatical processing of data from heterogeneous

sources spread across the web. This led to emergence of

various microformats and web APIs, and finally the

concept of Semantic Web. Sematic Web implies usage

of standard stack of data formats and technologies

intended to support data accumulation, structuring and

exchange across the web. The most important of these

technologies are RDF, RDFS, OWL and SPARQL.

From the practical point of view one of the most

interesting Semantic Web initiatives is Linking Open

Data project [8]. This project aims for quantitative

filling of the web with data s tructured according to

Semantic Web standards and for interlinking of

semantic data sources. As a result, a global Linked

Open Data space should be established, similar to

hypertextual web of linked documents. Publishing data

in Linked Open Data space encourages reuse of data,

decreases data redundancy, maximizes its (real and

potential) inter-connectedness and enables network

effects to add value to data. Data providers can benefit

from publishing their data in LOD space. Unfortunately,

the process of publishing is not that simple and consists

of several steps. Small organizations often cannot afford

to transform their data into LOD- acceptable form and

then support the published dataset. To the moment,

there is no special software to support the full cycle of

publishing and managing linked open datasets. A

system to support integration of data from independent

data sources into the web of linked data is required.

2 Related work

To the moment, there are quite few solutions that

support variuos steps required to include one’s data into

Linked Open Data space, even though they are based on

existing hypertext web technologies. And there is no

system that includes all the functionality recommended

by LOD project. The most complex solution available

now is Virtuoso Universal Server [11] platform. It

provides tools for representing data from different

sources (relational databases, RDF-storages, Web APIs,

etc.) as a single virtual database and supports RDF data

publishing. Virtuoso offers SPARQL access to its data

and such features as RDF-crawler and simple reasoner.

Virtuoso can be extended in multiple ways, e.g.

published RDF-data can be accompanied with voiD

descriptors. Unfortunately all the extensions that are

useful for linked data publishing are made on

instrumental level and not on data model level.

Virtuoso is commercial software with limited open-

source community edition. Among other open-source

solutions it is worth to mention D2R Server [3], which

supports RDF data publishing from relational databases

and SPARQL querying. The MASTRO [4] and the data

integration system developed in Dorodnicyn Computing

Centre of RAS [2] provide richer semantic formalisms

compared to D2R and Virtuoso. However, the first

system is bound to a single federative database and the

second one implies that its sources share some common

URIs. And both of them don’t provide any means for

publishing or interlinking with other RDF datasets.

However, both Virtuoso and D2R Server do not go

beyond simple RDF publishing. Their RDF-resource

interlinking capabilities are limited to URI generation

from templates. In many cases using such templated

URIs cannot expose identity relations between RDF

resources from different datasets and truly interlink

these datasets. There are several applications for RDF

data interlinking and link supporting, such as SILK

[12], LIMES, SemMF and DSNotify. But at the

moment none of these applications provide means for

integration of one’s RDF into the whole Linked Data

space. I.e. there are no toos that can automatically

discover new related datasets in the web, the set up and

support links to the resources in these datasets. Some

proposals for such systems are made in [10].

mailto:K.Kuznetcov@gmail.com

The possibilities of non-trivial usage of generated

linksets are yet to be explored. Very few applications

take advantage of this feature of Linked Open Data

space. It is worth to mention SPLENDID system [6]

here, which uses linksets statistics to optimize

federative SPARQL queries. Some semantic search

engines also utilize voiD descriptions of linksets.

3 Problem statement

This article proposes a concept of automated data

integration system in Linked Open Data space.

Proposed system should

• Form the single dataset from multiple

heterogeneous sources of structured or unstructured

information in similar knowledge domain and

support/update formed dataset;

• Discover and store links between resources

from system dataset and resources from different

Linked Open Data sets available on the Internet in RDF

format, as well as implicit links between resources

within system dataset;

• Publish system dataset in the Internet in RDF

format and provide access to it via user interface and

API;

 • Provide users and external applications with

unified query interface to all of system’s data sources;

• Support different data source types (including

relational databases and SPARQL endpoints) and

support on-fly connection of new data sources;

• Include flexible ontology of knowledge

domain that follows Linking Open Data project

recommendations and can be extended to s upport new

data sources.

4 System architecture overview

Proposed system will follow modular architecture and

will consist of following components:

• Ontology of informational objects and links of

interest to system data consumers and providers ;

• Linking subsystem, that should discover and

store links between resources from system’s data

sources and/or resources from external Linked Data

sources;

• Publishing subsystem, which should provide

users and applications with access to resources from

system’s dataset according to LOD project

recommendations;

• Data integration subsystem, which will contain

mechanism to uniquely identify system’s resources both

within system and in Linked Open Data space and

provide uniform access to all system’s resources. This

subsystem will include a set of adapters that provide

unified SPARQL access to system’s data sources of

different types (relational databases, Web APIs, etc.);

• Harvesting and extraction subsystem with a set

of harvester components, which will gather data from

system’s sources of unstructured data (text files,

scanned documents, etc.), transform it into structured

form and store it. This system is a subject of a future

work.

4.1 Ontology

The system uses OWL ontology to semantically

organize objects and links that match the concepts of

interest from knowledge domain of system’s data

sources. Ontology consists of core terms and imported

modules which can be added in case when some

resources in newly added data source require more

precise definition. In Linked Open Data space ontology

serves as system’s data vocabulary, it is used to

establish terminological outgoing links to external

datasets and allows external applications to discover

metadata to establish ingoing links. Following the

principles of Linked Open Data, ontology is annotated

in human language with such terms as rdfs:label or

rdfs:comment. Ontology’s terms should be defined in

URI namespace controlled by the system. Ontology

adapts common Linked Data vocabularies such as

Dublin Core, FOAF, vCard, PRISM, SIOC, Creative

Commons, BibTex, Schema.org. Core of ontology is

based on ENIP RAS ontology.

4.2 Publishing subsystem

Publishing subsystem will serve as an entry point to the

system for human users and Linked Data applications . It

should dereference URIs of system’s resources, i.e.

return descriptions of the object or concept identified by

these URIs. It can be achieved by using a mechanism

called content negotiation. Depending on HTTP GET

request header, publishing subsystem will return either

HTML representation or RDF/XML (as required by

Linked Data applications) representation of the

resource.

Publishing subsystem will receive data from data

integration subsystem. For dereferencing resource URI,

following information should be requested from data

integration subsystem:

• All the literal values of resource, all incoming

and outgoing RDF links. This information can be

retrieved with simple SPARQL queries with patterns

{<URI> ?x ?y} and {?x ?y <URI>};

• Most likely the results of these simple requests

will contain URIs of other system’s resources. Linked

Data applications often traverse URIs they find in RDF

documents. Therefore to reduce the number of HTTP

requests publishing subsystem should extend

aforementioned requests to some depth, or by applying

some explicitly stated rules;

• Information on ontology class to which the

requested resource belongs and all its ancestors;

• Information on the dataset to which this

resource belongs;

All the information retrieved from data integration

subsystem will be represented as a set of RDF triples. In

case of RDF document these triples will be merged into

resulting RDF/XML document and returned to client. In

other case the triples will be published as HTML+RDFa

document generated from template. These templates can

be specified in general form and then redefined for

specific classes.

4.3 Data integration subsystem

A data integration subsystem will provide other

subsystems or external agents with uniform access

interface to all of the system’s data sources. Requested

information should be specified with SPARQL query.

This subsystem will be responsible for presenting

system’s data as single dataset in Linked Open Data

space. There are several approaches to data integration

systems – data warehousing, data mediation, peer-to-

peer systems. Proposed system is supposed to work

with multiple strongly autonomous data sources;

therefore it adapts data mediation architecture. The

drawback of such systems (e.g. Virtuoso) is huge

amount in network interactions required to produce

query answer. Proposed system uses Linked Open Data

principles to reduce this drawback.

Data sources will be connected to the system via

adapters, which are SPARQL endpoints capable of

querying data sources in terms of system ontology.

These adapters should be generic, configurable

components (e.g. JDBC adapter, REST API adapter).

As opposed to existing data integration systems with

semantic capabilities (e.g. Virtuoso with its Sponger

cartridges), resources from different data sources won’t

be merged into single dataset by providing same URI to

identical resources. Instead, in the spirit of Linked Open

Data, every data source should be considered to contain

unique resources and get its own sub-namespace (like

http://<system_URL>/datasets/<source_id>). Adapter

should confront every resource from its data source

with HTTP URI from this namespace. Therefore we

will be able to track resource origin by its URI. When

new data source will be added to the system, its adapter

will be configured by specifying generic adapter

settings (e.g. JDBC connection string), general Dublin

Core description of the source, topic of interest

categorization, licensing information, etc. Adapter

configuration also includes the set of ontology classes

and properties to which data in these sources belongs.

This information can be entered manually or obtained

with SPARQL ASK request. Next, adapter

configuration will be published as voiD [1] descriptor

of dataset. All such datasets are subsets (in terms of

voiD) of system’s whole dataset. However, all of them

will be accessed via single SPARQL endpoint. Such

structure preserves autonomy and independence of data

sources while integrating them all together in Linked

Open Data space.

Execution of queries in data integration subsystem

will be carried out as follows. The first step is a

SPARQL query rewriting according to the axioms of

ontology, as described in [2]. Then algebraic query

optimization techniques are applied. The result of this

phase in terms of descriptive logic is the union of

conjunctive queries with simple constraints. In the

second step the set of relevant data sources for each

atom of each conjunctive query is determined according

to configuration of adapters. If there are no data sources

relevant to an atom, the entire conjunctive query is

dropped. As a result, a union of conjunctive queries

with atoms of different data sets will be obtained.

Traditionally, the next step in data mediation

process is construction of the physical query plan and

its execution. During execution of query with atoms

related to different data sources the results of subqueries

to these data sources are joined. However, in the

proposed system subquery results can be joined on

literal field values and not on the URIs, because data

sources are presented in a form of independent Linked

Open Data sets and do not share common URIs . If

subqueries to different data sources are to be joined on

URIs we will have to use the sets of links generated by

linking subsystem between these data sources. Each

conjunctive query is a graph pattern with vertices being

either literal values or the URIs or variables, and edges

are labeled with predicates in terms of different data

sources. If two adjacent edges are labeled with

predicates from different sources, it is necessary to refer

to the linkset for this pair of sources and select resource

pairs that satisfy a given part of graph pattern. By

performing this operation on all the links in the

conjunctive query, we will obtain the set of resource

URIs that satisfies part of the pattern that defines

relationships between different data sources. Then the

subquery parts related to specific data sources will be

executed by adapters with corresponding join variables

being replaced by URIs from linksets . On this step

traditional query optimization techniques can be applied

again.

4.3 Linking subsystem

RDF documents published in the Linked Open Data

space are required to contain outgoing links. These

outgoing links are RDF triples with the subject being

the URI of the resource from the local namespace and

the URI of the object and / or predicate belonging to the

namespace of another dataset. The most important type

of outgoing links is identity links that point at URI

aliases used by other data sources to identify the same

real-world object or abstract concept. Identity links can

use such predicates as owl: sameAs, rdfs: seeAlso or

special SKOS terms. Although the uses of predicate

owl: sameAs in the LOD space are often contrary to the

semantics of OWL [7], its use is recommended by W3C

Technical Architecture Group. Linking subsystem will

be responsible for the discovery, storage and support of

identity links. Properties of the link include pair of

URIs, link generation time and method, date of last link

check and similarity factor. When the link is published

either owl:sameAs or rdfs:seeAlso predicate is used in

the triple depending on similarity factor value.

Linking subsystem will work as follows. In the first

step, the two data sources to be interlinked are found.

For this pair an initially empty voiD linkset is created

and published. When new data sources is added to the

system the linksets between this new data source and all

existing data sets from other sources are automatically

created. A linkset between internal dataset and external

Linked Open Data set will be created in one of the

following cases:

• The user can manually select a pair of datasets

for linking;

• Relevant datasets can be discovered using

HTTP referrer technique described in [9];

• Relevant datasets can set be discovered by

linking subsystem itself by traversing links in external

dataset that is already linked to one of internal datasets.

When two target datasets for interlinking will have

been selected, the subsystem will clusterize datasets by

classes and determines pairs of clusters to be

interlinked. This should be done to reduce the number

of pairwise comparisons of datasets elements. In the

case of two internal datasets both of them are described

by the same ontology, so that pairs of clusters contain

instances of same ontology classes. In the case of

linking to an external dataset the subsystem might select

pairs of classes with help of different ontology mapping

techniques [5], as well as using discovered or manually

specified ontology mapping rules.

The third and final step of interlinking involves

pairwise comparison of clusters elements to detect pairs

of identity relations. These relations will be detected

using SILK LSL language rules. In the case of internal

data sources, rules will be declared together with the

ontology and determine which instances of the same

class are identical. In the case of an external dataset

rules will be either specified manually, or derived from

the existing rules and ontology mapping rules .

Complete binding is achieved by pairwise

comparison of all elements of all datasets (both internal

and external), but in practice such comparison is

impossible. Link generation optimization requires

additional study.

5 Conclusion

This paper proposes a concept of data integration

system orientated towards Linked Open Data space.

The novelty of this concept lies in its hybrid approach;

the system proposed combines data mediation and data

warehousing approaches by using locally stored linksets

as indexes for a search engine hasn’t been implemented

yet. To the author’s knowledge, such method hasn’t

been implemented yet. Besides, while there are works

dedicated to bringing single data sources into the LOD

space or dealing with multiple already present sources

in LOD space, the idea of bringing multiple data

sources into LOD space via single data integration

system has received very little attention.

Currently, the proof-of-concept system is being

developed in CC RAS as a part of a practical project

dedicated to integration of data on protected sites and

animal species. While participating in a group on this

project, the author is working on query answering

algorithms in presence of linksets . As a result of this

project, a large set of data on national parks should

emerge in the LOD space, and if incoming links from

external datasets appear, the project would be

considered to be successful.

Future works on this project might include the study

of link network generation and support algorithms. The

system can also be extended with modules to access

external Semantic Web resource aggregators (sig.ma)

and semantic search engines (sindice.com). Also,

additional studies in the management of licensing and

data access in the context of the Linked Open Data are

required.

References

[1] K. Alexander, R. Cyganiak, M. Hausenblas, and J.

Zhao. Describing linked datasets. In Proceedings of

the WWW2009 Workshop on Linked Data on the

Web, 2009.

[2] A. A. Bezdushny. Formal Model of Ontology-

Based Data Integration Systems. Novosibirsk, 2008

[3] C. Bizer, R. Cyganiak. D2RQ — Lessons Learned.

Position paper for the W3C Workshop on RDF

Access to Relational Databases, 2007.

http://www.w3.org/2007/03/RdfRDB/papers/d2rq-

positionpaper/

[4] D. Calvanese, G. De Giacomo, D. Lembo et al. The

MASTRO system for ontology-based data access.

Semantic Web Journal, volume 2, number 1, pages

43-53, 2011

[5] J. Euzenat, A. Ferrara, et al. First results of the

ontology alignment evaluation initiative 2011. In

Proc. of 6th Ontology Matching Workshop

(OM‘11), at International Semantic Web

Conference (ISWC‘11), Bonn, Germany, 2011.

[6] O. Gorlitz, S. Staab. SPLENDID: SPARQL

Endpoint Federation Exploiting VOID

Descriptions. Proceedings of the 2nd International

Workshop on Consuming Linked Data, Bonn,

Germany, 2011.

[7] H. Halpin, P. Hayes, J. McCusker, D. Mcguinness,

and H. Thompson. When owl:sameas isn't the

same: An analysis of identity in linked data. In

Proceedings of the 9th International Semantic Web

Conference, 2010

[8] T. Heath and C. Bizer. Linked Data: Evolving the

Web into a Global Data Space (1st edition).

Synthesis Lectures on the Semantic Web: Theory

and Technology, 1:1, 1-136. Morgan & Claypool,

2011. http://linkeddatabook.com/editions/1.0/

[9] H. Muhleisen and A. Jentzsch: Augmenting the

Web of Data using Referers Linked Data on the

Web (LDOW2011), Mar. 2011

[10] A. Nikolov and M. d'Aquin. Identifying Relevant

Sources for Data Linking using a Semantic Web

Index, Workshop: 4th Workshop on Linked Data

on the Web (LDOW 2011) at 20th International

World Wide Web Conference (WWW 2011),

Hyderabad, India, 2011.

[11] Virtuoso Universal Server, 2011.

http://virtuoso.openlinksw.com/

[12] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov.

Discovering and maintaining links on the web of

data. In Proceedings of the International Semantic

Web Conference, pages 650–665, 2009

