
A normal form for hypergraph-based module
extraction for SROIQ

Riku Nortje, Katarina Britz, and Thomas Meyer

Center for Artificial Intelligence Research, University of KwaZulu-Natal and CSIR
Meraka Institute, South Africa

Email: nortjeriku@gmail.com; {arina.britz;tommie.meyer}@meraka.org.za

Abstract. Modularization is an important part of the modular design
and maintenance of large scale ontologies. Syntactic locality modules,
with their desirable model theoretic properties, play an ever increasing
role in the design of algorithms for modularization, partitioning and rea-
soning tasks such as classification. It has been shown that, for the DL
EL+, the syntactic locality module extraction problem is equivalent to
the reachability problem for hypergraphs. In this paper we investigate
and introduce a normal form for the DL SROIQ which allows us to map
any SROIQ ontology to an equivalent hypergraph. We then show that
standard hyperpath search algorithms can be used to extract modules
similar to syntactic locality modules for SROIQ ontologies.

1 Introduction

The advent of the semantic web presupposes a significant increase in the size
of ontologies, their distributive nature and the requirement for fast reasoning
algorithms. Modularization techniques not only play an increasingly important
role in the design and maintenance of large-scale distributed ontologies, but also
in the design of algorithms that increase the efficiency of reasoning tasks such
as subsumption testing and classification [11, 1].

Extracting minimal modules is computationally expensive and even undecid-
able for expressive DLs [2, 3]. Therefore, the use of approximation techniques and
heuristics play an important role in the effective design of algorithms. Syntactic
locality [2, 3], because of its excellent model theoretic properties, has become an
ideal heuristic and is widely used in a diverse set of algorithms [11, 1, 4].

Suntisrivaraporn [11] showed that, for the DL EL+, ⊥-locality module extrac-
tion is equivalent to the reachability problem in directed hypergraphs. Nortjé et
al. [9, 10] extended the reachability problem to include >-locality and introduced
bidirectional reachability modules as a subset of ⊥> modules.

In this paper we introduce a normal form for the DL SROIQ, which allows
us to map any SROIQ ontology to an equivalent syntactic locality preserving
hypergraph. We show that, given this mapping, the extraction of ⊥-locality
modules is equivalent to the extraction of all B-hyperpaths, >-locality is similar
to extracting all F -hyperpaths and ⊥>∗ modules to that of extracting frontier
graphs. These similarities demonstrate a unique relationship between reasoning

tasks, based on syntactic locality, for SROIQ ontologies, and standard well
studied hypergraph algorithms.

2 Preliminaries

2.1 Hypergraphs

Hypergraphs are a generalization of graphs and have been extensively studied
since the 1970s as a powerful tool for modelling many problems in Discrete Math-
ematics. In this paper we adapt the definitions of hypergraphs and hyperpaths
from [8, 12].

A (directed) hypergraph is a pair H = 〈V, E〉, where V is a finite set of nodes,
E ⊆ 2V × 2V is the set of hyperedges such that for every e = (T (e), H(e)) ∈ E ,
T (e) 6= ∅, H(e) 6= ∅, and T (e) ∩ H(e) = ∅. A hypergraph H′ = 〈V ′, E ′〉 is a
subhypergraph of H if V ′ ⊆ V and E ′ ⊆ E . A hyperedge e is a B-hyperedge
if |H(e)| = 1. A B-hypergraph is a hypergraph such that each hyperedge is a
B-hyperedge. A hyperedge e is an F-hyperedge if |T (e)| = 1. An F-hypergraph is
a hypergraph such that each hyperedge is an F-hyperedge. A BF-hypergraph is
a hypergraph for which every edge is either a B- or an F-hyperedge.

Let e = (T (e), H(e)) be a hyperedge in some directed hypergraph H. Then,
T (e) is known as the tail of e and H(e) is known as the head of e. Given a
directed hypergraph H = (V, E), its symmetric image H is a directed hypergraph
defined as: V(H) = V(H) and E(H) = {(H,T) | (T,H) ∈ E(H)}. We denote by
BS(v) = {e ∈ E | v ∈ H(e)} and FS(v) = {e ∈ E | v ∈ T (e)} respectively
the backward star and forward star of a node v. Let n and m be the number of
nodes and hyperedges in a hypergraph H. We define the size of H as size(H) =
|V|+

∑
e∈E(|T (e)|+ |H(e)|).

A simple path
∏
st from s ∈ V(H) to t ∈ V(H) inH is a sequence (v1, e1, v2, e2,

..., vk, ek, vk+1) consisting of distinct nodes and hyperedges such that s = v1,
t = vk+1 and for every 1 ≤ i ≤ k, vi ∈ T (ei) and vi+1 ∈ H(ei). If in addition
t ∈ T (e1) then

∏
st is a simple cycle. A simple path is cycle free if it does not

contain any subpath that is a simple cycle.

A node s is B-connected to itself. If there is a hyperedge e such that all nodes
vi ∈ T (e) are B-connected to s, then every vj ∈ H(e) is B-connected to s. A
B-hyperpath from s ∈ V(H) to t ∈ V(H) is a minimal subhypergraph of H where
t is B-connected to s. An F-hyperpath

∏
st from s ∈ V(H) to t ∈ V(H) in H is

a subhyperpath of H such that
∏
st is a B-hyperpath from t to s in H. A BF-

hyperpath from s ∈ V(H) to t ∈ V(H) in H is a minimal (in the inclusion sense)
subhyperpath of H such that it is simultaneously both a B-hyperpath and an F-
hyperpath from s to t inH. We note that every hypergraphH can be transformed
to a BF-hypergraph H′ by replacing each hyperedge e = (T (e), H(e)) with the
two hyperedges e1 = (T (e), {nv}), e2 = ({nv}, H(e)) where nv is a new node.

2

Algorithm 1 (Visiting a hypergraph [8])
Procedure Bvisit(s,H) Procedure Fvisit(t,H)
1 : for each u ∈ V do blabel(u) := false; for each u ∈ V do flabel(u) := false;
2 : for each e ∈ E do T (e) := 0; for each e ∈ E do T (e) := 0;
3 : Q := {s}; blabel(s) := true; Q := {t}; flabel(t) := true;
4 : while Q 6= ∅ do while Q 6= ∅ do
5 : select and remove u ∈ Q; select and remove u ∈ Q;
6 : for each e ∈ FS(u) do for each e ∈ BS(u) do
7 : T (e) := T (e) + 1; H(e) := H(e) + 1;
8 : if T (e) := |Tail(e)|then if H(e) := |Head(e)|then
9 : for each v ∈ Head(e) do for each v ∈ Tail(e) do
10 : if blabel(v) = false then if flabel(v) = false then
11 : blabel(v) = true flabel(v) = true
12 : Q := Q ∪ {v} Q := Q ∪ {v}

Given some node s, Algorithm 1 can be used to find all B-connected or F-
connected nodes to s in O(size(H)) time. Here, the set of all B-hyperpaths from
s and F-hyperpaths to t are respectively represented by all those nodes n such
that blabel(n) = true or flabel(n) = true, as well as the edges connecting those
nodes.

Fig. 1. Example hypergraph H1

Example 1. In Figure 1 we have H1 = (V1, E1), with V1 = {v1, ..., v9} and E1 =
{e1, e2, e3, e4, e5, e6} such that e1 = ({v1}, {v2, v3}), e2 = ({v2}, {v1, v5, v6}),
e3 = ({v3, v4}, {v7}), e4 = ({v5, v6}, {v8}), e5 = ({v7}, {v6, v8}) and e6 =
({v6, v8}, {v9}). The directed hypergraph G1 with nodes V(G1) = {v1, v2, v3, v5,
v6, v8, v9} and E(G1) = {e1, e2, e4, e6} is a B-hyperpath from v1 to v9 in H1. The
hypergraph G2 with V(G2) = {v3, v4, v6, v7, v8, v9} and E(G2) = {e3, e5, e6} is an
F-hyperpath from v3 to v9 in H1. The hypergraph G3 with V(G3) = {v6, . . . v9}
and E(G3) = {e5, e6} is a BF-hyperpath from v7 to v9 in H1.

Definition 1. Given a hypergraph H = (V, E), the frontier graph H′ = (V ′, E ′, s, t)
of H, such that V ′ ⊆ V, E ′ ⊆ E, s, t ∈ V, is the maximal (in the inclusion sense)
BF -graph in which (1) s and t are the origin and destination nodes, (2) if v ∈ V ′
then v is B-connected to s, and t is F-connected to v in H′.

3

Algorithm 2 (Frontier graph Extraction Algorithm [8])
Procedure frontier(H,H′, s, t)
1 : H′ := H; change := true
2 : while change = true do
3 : change = false
3 : H′ = Bvisit(s,H′); H′ = Fvisit(t,H′)
4 : for each v ∈ V ′
5 : if blabel(v) = false or flabel(v) = false then
6 : change := true
7 : V ′ = V ′ − {v}; E ′ = E ′ − FS(v)−BS(v)
8 : if s 6∈ V ′ or t 6∈ V ′ then
9 : H′ := ∅; change := false;

Algorithm 2 can be used to extract a frontier graph for any source and
destination nodes and runs in O(n size(H)) time.

2.2 The DL SROIQ

In this section we give a brief introduction to the DL SROIQ [5, 7] with its
syntax and semantics listed in Table 1. NC , NR and NI denote disjoint sets
of atomic concept names, atomic roles names and individual names. The set
NR includes the universal role. Well-formed formulas are created by combining
concepts from the table by using the connectives ¬,u,t etc.

Given R1 ◦ . . . ◦ Rn v R, where n > 1 and Ri, R ∈ NR, is a role inclusion
axiom (RIA). A role hierarchy is a finite set of RIAs. Here R1 ◦ . . . ◦Rn denotes
a composition of roles where R,Ri may also be an inverse role R−. A role R
is simple if it: (1) does not appear on the right-hand side of a RIA; (2) is the
inverse of a simple role; or (3) appears on the right-hand side of a RIA only if the
left-hand side consists entirely of simple roles. Ref(R), Irr(R) and Dis(R,S),
where R, S are roles other than U , are role assertions. A set of role assertions
is simple w.r.t. a role-hierarchy H if each assertion Irr(R) and Dis(R,S) uses
only simple roles w.r.t. H.

A strict partial order ≺ on NR is a regular order if, and only if, for all roles
R and S: S ≺ R iff S− ≺ R. Let ≺ be a regular order on roles. A RIA w v R
is ≺-regular if, and only if, R ∈ NR and w has one of the following forms: (1)
R ◦R, (2) R−, (3) S1 ◦ . . . ◦ Sn, where each Si ≺ R, (4) R ◦ S1 ◦ . . . ◦ Sn, where
each Si ≺ R and (5) S1 ◦ . . . ◦ Sn ◦R, where each Si ≺ R. A role hierarchy H is
regular if there exists a regular order ≺ such that each RIA in H is ≺-regular.

An RBox is a finite, regular role hierarchy H together with a finite set of
role assertions simple w.r.t. H. If a1, . . . , an are in NI , then {a1, . . . , an} is a
nominal. No is the set of all nominals. The set of SROIQ concept descriptions
is the smallest set such that: (1) ⊥,>, each C ∈ NC , and each o ∈ No is a concept
description. (2) If C is a concept description, then ¬C is a concept description.
(3) If C and D are concept descriptions, R is a role description, S is a simple role
description, and n is a non-negative integer, then the following are all concept
descriptions: (C uD), (C tD),∃R.C,∀R.C,6 nS.C,> nS.C, ∃S.Self .

4

Table 1. Syntax and semantics of SROIQ

Concept Syntax Semantics

atomic concept C ∈ NC CI ⊆ ∆I
individual A ∈ NI aI ∈ ∆I
nominal {a1, . . . , an}, ai ∈ NI {aI1 , . . . , aIn}
role R ∈ NR RI ⊆ ∆I ×∆I
inverse role R−, R ∈ NR R−I = {(y, x)|(x, y) ∈ RI}
universal role U UI = ∆I ×∆I
role composition R1 ◦ . . . ◦Rn {(x, z)|(x, y1) ∈ RI1 ∧ (y1, y2) ∈

RI2 ∧ . . . ∧ (yn, z) ∈ RIn+1}
top > >I = ∆I

bottom ⊥ ⊥I = ∅
negation ¬C (¬C)I = ∆I \ CI
conjunction C1 u C2 (C1 u C2)I = CI1 ∩ CI2
disjunction C1 t C2 (C1 t C2)I = CI1 ∪ CI2
exist restriction ∃R.C {x|(∃y)[(x, y) ∈ RI ∧ y ∈ CI]}
value restriction ∀R.C {x|(∀y)[(x, y) ∈ RI → y ∈ CI]}
self restriction ∃R.Self {x|(x, x) ∈ RI}
atmost restriction 6 nR.C {x|#{y|(x, y) ∈ RI ∧ y ∈ CI} 6 n}
atleast restriction > nR.C {x|#{y|(x, y) ∈ RI ∧ y ∈ CI} > n}
Axiom Syntax Semantics

concept inclusion C1 v C2 CI1 ⊆ CI2
role inclusion R1 ◦ . . . ◦Rn v R (R1 ◦ . . . ◦Rn)I ⊆ RI
reflexivity Ref(R) {(x, x)|x ∈ ∆I} ⊆ RI
irreflexivity Irr(R) {(x, x)|x ∈ ∆I} ∩RI = ∅
disjointness Dis(R,S) SI ∩RI = ∅
class assertion C(a) aI ∈ CI
inequality assertion a 6= b aI 6= bI

role assertion R(a, b) (aI , bI) ∈ RI
negative role assertion ¬R(a, b) (aI , bI) 6∈ RI

If C and D are concept description then C v D is a general concept inclusion
(GCI) axiom. A TBox is a finite set of GCIs. If C is a concept description,
a,B ∈ NI , R,S ∈ NR with S a simple role description, then C(a), R(a, b),
¬S(a, b), and a 6= b, are individual assertions. An SROIQ ABox is a finite set
of individual assertions. All GCIs, RIAs, role assertions, and individual assertions
are referred to as axioms. A SROIQ-KB base is the union of a TBox, RBox
and ABox.

2.3 Modules

Definition 2. (Module for the arbitrary DL L) Let L be an arbitrary de-
scription language, O an L ontology, and σ a statement formulated in L. Then,
O′ ⊆ O is a module for σ in O (a σ-module in O) whenever: O |= σ if and only
if O′ |= σ. We say that O′ is a module for a signature S in O (an S-module in
O) if, for every L statement σ with Sig(σ) ⊆ S, O′ is a σ-module in O.

5

Definition 2 is sufficiently general so that any subset of an ontology preserving
a statement of interest is considered a module, the entire ontology is therefore
a module in itself. An important property of modules in terms of the modular
reuse of ontologies is safety [2, 3]. Intuitively, a module conforms to a safety
condition whenever an ontology T reuses concepts from an ontology T ′ in such
a way so that it does not change the meaning of any of the concepts in T ′. This
may be formalized in terms of the notion of conservative extensions:

Definition 3. (Conservative extension [3]) Let T and T1 be two ontologies
such that T1 ⊆ T , and let S be a signature. Then (1) T is an S-conservative
extension of T1 if, for every α with Sig(α) ⊆ S, we have T |= α iff T1 |= α. (2)
T is a conservative extension of T1 if T is an S-conservative extension of T1 for
S = Sig(T1).

Definition 4. (Safety [3, 6]) An ontology T is safe for T ′ if T ∪ T ′ is a
conservative extension of T ′. Further let S be a signature. We say that T is safe
for S if, for every ontology T ′ with Sig(T) ∩ Sig(T ′) ⊆ S, we have that T ∪ T ′
is a conservative extension of T ′.

Intuitively, given a set of terms, or seed signature, S, a S-module M based
on deductive-conservative extensions is a minimal subset of an ontology O such
that for all axioms α with terms only from S, we have thatM |= α if, and only if,
O |= α, i.e., O andM have the same entailments over S. Besides safety, reuse of
modules requires two additional properties namely coverage and independence.

Definition 5. (Module coverage [6]) Let S be a signature and T ′, T be
ontologies with T ′ ⊆ T such that S ⊆ Sig(T ′). Then, T ′ guarantees coverage of
S if T ′ is a module for S in T .

Definition 6. (Module Independence [6]) Given an ontology T and signa-
tures S1, S2, we say that T guarantees module independence if, for all T1 with
Sig(T) ∩ Sig(T1) ⊆ S1, it holds that T ∪ T1 is safe for S2.

Unfortunately, deciding whether or not a set of axioms is a minimal module
is computationally hard or even impossible for expressive DLs [2, 3]. However,
if the minimality requirement is dropped, good sized approximations can be
defined that are efficiently computable, as in the case of syntactic locality, which
modules are extracted in polynomial time.

Algorithm 3 (Extract a locality module [2])
Procedure extract-module(T , S, x)
Inputs: Tbox T ; signature S; x ∈ ⊥,>; Output x-module M
1 :M := ∅; T ′ = T ;
2 : repeat
3 : change = false
4 : for each α ∈ T ′
5 : if α not x-local w.r.t. S∪Sig(M) then
6 : M =M+ {α}
7 : T ′ = T ′ \ {α}
8 : changed = true
9 : until changed = false

6

Definition 7. (Syntactic locality [3]) Let S be a signature and O a SROIQ
ontology. An axiom α is ⊥-local w.r.t. S (>-local w.r.t S) if α ∈ Ax(S), as
defined in the grammar:
⊥-Locality
Ax(S) ::= C⊥ v C|C v C>|w⊥ v R|Dis(S⊥, S)|Dis(S, S⊥)
Con⊥(S) ::= A⊥|¬C>|C⊥ u C|C u C⊥|C⊥1 t C⊥2 |∃R⊥.C|∃R.C⊥

|∃R⊥.Self | > nR⊥.C| > nR.C⊥
Con>(S) ::= ¬C⊥|C>1 u C>2 |C> t C|C t C>|∀R.C>| 6 nR.C>

|∀R⊥.C| 6 nR⊥.C
>-Locality
Ax(S) ::= C⊥ v C|C v C>|w v R>
Con⊥(S) ::= ¬C>|C⊥ u C|C u C⊥|C⊥1 t C⊥2 |∃R.C⊥| > nR.C⊥

|∀R>.C⊥| 6 nR>.C⊥
Con>(S) ::= A>|¬C⊥|C>1 u C>2 |C> t C|C t C>|∀R.C>|

∃R>.C>| > nR>.C>| 6 nR.C>|∀R⊥.C| 6 nR⊥.C
In the grammar, we have that A⊥, A> 6∈ S is an atomic concept, R⊥, R> (resp.
S⊥,S>) is either an atomic role (resp. a simple atomic role) not in S or the
inverse of an atomic role (resp. of a simple atomic role) not in S, C is any con-
cept, R is any role, S is any simple role, and C⊥ ∈ Con⊥(S), C> ∈ Con>(S).
We also denote by w⊥ a role chain w = R1 ◦ . . . ◦Rn such that for some i with
1 ≤ i ≤ n, we have that Ri is (possibly inverse of) an atomic role not in S. An
ontology O is ⊥-local (>-local) w.r.t. S if α is ⊥-local (>-local) w.r.t. S for all
α ∈ O.

Algorithm 3 may be used to extract either >- or ⊥-locality modules. Al-
ternating the algorithm between ⊥- and >-locality module extraction until a
fixed-point is reached results in ⊥>∗ modules.

3 Normal form

In this section we will introduce a normal form for any SROIQ ontology. The
normal form is required to facilitate the conversion process between a SROIQ
ontology and a hypergraph.

Definition 8. Given Bi ∈ NC \ {⊥}, Ci ∈ NC \ {>}, D ∈ {∃R.B, ≥ nR.B,
∃R.Self}, Ri, Si ∈ NR and n > 1, a SROIQ ontology O is in normal form
if every axiom α ∈ O is in one of the following forms:

α1: B1 u . . . uBn v C1 t . . . t Cm α2: ∃R.B1 v C1 t . . . t Cm
α3: B1 u . . . uBn v ∃R.Bn+1 α4: B1 u . . . uBn v ∃R.Self
α5: ∃R.Self v C1 t . . . t Cm α6: > nR.B1 v C1 t . . . t Cm
α7: B1 u . . . uBn v> nR.Bn+1 α8: R1 ◦ . . . ◦Rn v Rn+1

α9: D1 v D2

In order to normalize a SROIQ ontology O we repeatedly apply the nor-
malization rules from Table 2. Each application of a rule rewrites an axiom into
an equivalent normal form. Algorithm 4 illustrates the conversion process.

7

Algorithm 4 Given any SROIQ axiom α:

1. Recursively apply rules NR7 - NR11 to eliminate all equivalences, universal
restrictions, atmost restrictions and complex role fillers.

2. Given that α = (αL v αR), recursively apply the following steps until αL
contains no disjunctions and αR contains no conjunctions:
(a) recursively apply rules NR1, NR3, NR6 to αL,
(b) recursively apply rules NR2, NR4, NR5 to αR.

3. recursively apply any applicable rules from NR12 through NR21.

Table 2. SROIQ normalization rules

NR1 ¬Ĉ2 v Ĉ1 > v Ĉ1 t Ĉ2

NR2 B̂1 v ¬B̂2 B̂1 u B̂2 v ⊥
NR3 B̂ u D̂ v Ĉ B̂ uA v Ĉ, D̂ v A, A v D̂
NR4 B̂ v Ĉ t D̂ B̂ v Ĉ tA, D̂ v A, A v D̂
NR5 B̂ v Ĉ1 u Ĉ2 B̂ v Ĉ1, B̂ v Ĉ2

NR6 B̂1 t B̂2 v Ĉ B̂1 v Ĉ, B̂2 v Ĉ
NR7 . . .∀R.Ĉ¬∃R.A . . ., A u Ĉ v ⊥, > v A t Ĉ
NR8 . . .∃R.D̂∃R.A . . ., D̂ v A, A v D̂
NR9 . . . > nR.D̂ > nR.A . . ., D̂ v A, A v D̂
NR10 . . . 6 nR.Ĉ¬(> (n+ 1)R.Ĉ) . . .

NR11 B̂ ≡ Ĉ B̂ v Ĉ,Ĉ v B̂
NR12 > 0R.B v Ĉ > v Ĉ
NR13 B̂ v ∃R.⊥ B̂ v ⊥
NR14 B̂ v> nR.⊥ B̂ v ⊥
NR15 B̂ v> 0R.B
NR16 > nR.⊥ v Ĉ
NR17 ∃R.⊥ v Ĉ
NR18 B̂ u ⊥ v Ĉ
NR19 ⊥ v Ĉ
NR20 B̂ v Ĉ t >
NR21 B̂ v >
Above A 6∈ NC , B̂i and Ĉi are possibly complex concept descriptions

and D̂ a complex concept description. R ∈ NR, n > 0. We note that
rules NR18 and NR20 makes use of the commutativity of u and t.

Theorem 1. Algorithm 4 converts any SROIQ ontology O to an ontology O′
in normal form, such that O′ is a conservative extension of O. The algorithm
terminates in linear time and adds at most a linear number of axioms to O.

For every normalized ontology O′ the definition of syntactic locality from
Definition 7 may now be simplified to that of Definition 9. This is possible since
for every axiom α = (αL v αR) ∈ O′, ⊥-locality of α is dependent solely on αL
and >-locality is dependent solely on αR.

8

Definition 9. (Normal form syntactic locality) Let S be a signature and O
a normalized SROIQ ontology. Any axiom α is ⊥-local w.r.t. S (>-local w.r.t
S) if α ∈ Ax(S), as defined in the grammar:
⊥-Locality
Ax(S) ::= C⊥ v C | w⊥ v R | Dis(S⊥, S) | Dis(S, S⊥)
Con⊥(S) ::= A⊥ | C⊥u | C u C⊥ | ∃R⊥.C | ∃R.C⊥ | ∃R⊥.Self |

> nR⊥.C |> nR.C⊥
>-Locality
Ax(S) ::= C v C> | w v R>
Con>(S) ::= A> | C> t C | C t C>|∃R>.C> |> nR>.C> |

∃R>.Self
In the grammar, we have that A⊥, A> 6∈ S is an atomic concept, R⊥,R> (resp.
S⊥,S>) is either an atomic role (resp. a simple atomic role) not in S or the
inverse of an atomic role (resp. of a simple atomic role) not in S, C is any con-
cept, R is any role, S is any simple role, and C⊥ ∈ Con⊥(S), C> ∈ Con>(S).
We also denote by w⊥ a role chain w = R1 ◦ . . . ◦Rn such that for some i with
1 ≤ i ≤ n, we have that Ri is (possibly inverse of) an atomic role not in S. An
ontology O is ⊥-local(>-local) w.r.t. S if α is ⊥-local(>-local) w.r.t. S for all
α ∈ O.

We note that we may denormalize a normalized ontology if we maintain a
possibly many-to-many mapping from normalized axioms to their original source
axioms. Formally, define a function denorm : Ô → 2O, with O an SROIQ
ontology and Ô its normal form. For brevity, we write denorm(Φ), with Φ a set
of normalized axioms, to denote

⋃
α∈Φ denorm(α).

4 SROIQ hypergraph

Suntisrivaraporn [11] showed that for the DL EL+, extracting ⊥-locality modules
are equivalent to the reachability problem in directed hypergraphs. This was
extended in [9, 10] to include a reachability algorithm for >-locality modules. In
this section we show that a SROIQ ontology O in normal form can be mapped
to a hypergraph which preserves both ⊥-locality and >-locality.

Definition 10. Let α be a normalized axiom and α⊥ a minimum set of symbols
from Sig(α) required to ensure that α is not ⊥-local, and let H = (V, E) be
a hypergraph. We say that an edge e ∈ E preserves ⊥-locality iff α⊥ = T (e).
Similarly, e ∈ E preserves >-locality whenever α> = H(e).

For each normal form axiom αi in Definition 8 we show that αi may be
mapped to a set of hyperedges, with nodes denoting symbols from Sig(αi), such
that both ⊥-locality and >-locality are simultaneously preserved.

– Given α1 : B1 u . . . u Bn v C1 t . . . t Cm we map it to the hyperedge
eα1

= ({B1, . . . , Bn}, {C1, . . . , Cm}). We transform the hyperedge eα1
to

two new hyperedges eBα1
= ({B1, . . . , Bn}, {H1}) a B-hyperedge, eFα1

=

9

({H1}, {C1, . . . , Cm}) an F-hyperedge and with H1 a new node. By defi-
nition each Cj is B-connected to H1 if all Bi are B-connected to H1. From
Definition 9 we know that this preserves ⊥-locality for α1 since it is ⊥-local,
w.r.t. a signature S, exactly when any of the conjuncts Bi 6∈ S. In other
words it is non ⊥-local exactly when all Bi ∈ S. The same also holds for >-
locality, since eFα1

requires every Ci ∈ α1 to be in S for H1 to be F-connected.
From Definition 9 we see that, w.r.t. a signature S, eFα1

is >-local exactly
when any of the disjuncts Ci 6∈ S.

– Given α2 : ∃R.B1 v C1t . . .tCm or α6 : > nR.B1 v C1t . . .tCm we map it
to the two hyperedges eBα2/6

= ({B1, R}, {H2}), eFα2/6
= ({H2}, {C1, . . . , Cm})

an F-hyperedge and with H2 a new node. This mapping preserves ⊥-locality
for α2/6 since by Definition 9 it is ⊥-local, w.r.t. a signature S, exactly when
either B1 or R is not in S. The argument for >-locality follows that of α1.

– Given α3 : B1 u . . . uBn v ∃R.Bn+1 or α7 : B1 u . . . uBn v> nR.Bn+1 we
map it to the hyperedges eBα3/7

= ({B1, B2, . . . , Bn−1, Bn}, {H3}), eF1
α3/7

=

({H3}, {Bn+1}), eF2
α3/7

= ({H3}, {R}). This mapping preserves ⊥-locality for

α3/7 similarly to eBα1
for α1. From Definition 9 we know that >-locality for

either of these axioms, w.r.t. a signature S, is dependent on neither R nor
Bn+1 being elements of S. Therefore, they are non >-local exactly when
either or both of these are in S. This is represented by the two edges eF1

α3/7

and eF2
α3/7

for which H3 becomes F-connected exactly when either R or Bn+1

is F-connected.
– Given α4 : B1u . . .uBn v ∃R.Self and α5 : ∃R.Self v C1t . . .tCm we see

that ∃R.Self is both ⊥ or > local exactly when R 6∈ S. Therefore we map
α4 to the hyperedge eBα4

= ({R}, {C1, . . . , Cm}), and α5 to the hyperedge
eFα5

= ({B1, . . . , Bn}, {R}).
– Given α8 : R1 ◦ . . . ◦Rn v Rn+1, we see that α8 is ⊥-local exactly when any
Ri 6∈ S, i ≤ n and is >-local exactly when Rn+1 6∈ S. We therefore map α8

to the hyperedge eBα8
= ({R1, . . . , Rn}, {Rn+1}).

– For α9 we have many forms, all variants of those discussed in the pre-
vious mappings. Therefore α9 is mapped to any of the following: eB1

α9
=

({R,B1}, {H9}}), eF1
α9

= ({H9}, {R}), eF2
α9

= ({H9}, {B}), or e1α9
= ({R,B1},

{R}), or eF1
α9

= ({R1}, {R2}), eF2
α9

= ({R1}, {B}), or e1α9
= ({R1}, {R2}).

Given a SROIQ ontology O in normal form we may now map every axiom
α ∈ O to its equivalent set of hyperedges. For each of these mappings there are
at most three hyperedges introduced, therefore mapping the whole ontology O
to an equivalent hypergraph HO will result in a hypergraph with the number of
edges at most linear in the number of axioms in O. It is easy to show that the
mapping process can be completed in linear time in the number of axioms in O.

We note that, similar to the normalization process, we may maintain a pos-
sibly many-to-many mapping from normalized axioms to their associated hy-
peredges. Formally, define a function deedge : HO → 2O, with O a SROIQ
ontology and HO its hypergraph. For brevity, we write deedge(Φ), with Φ a set
of hyperedges, to denote

⋃
e∈Φ deedge(e).

10

5 Hypergraph module extraction

In this section we show that, given a hypergraph HO for a SROIQ ontology O,
we may extract a frontier graph from HO which is a subset of a ⊥>∗ module. We
show that some of these modules guarantee safety, module coverage and module
independence. The hypergraph algorithms presented require one start node s
and a destination node t. In order to extend these algorithms to work with an
arbitrary signature S, we introduce a new node s with with an edge esi = (s, si)
for each si ∈ S ∪ >, as well as a new node t with an edge eti = (si, t) for each
si ∈ S ∪ ⊥.

Theorem 2. Let O be a SROIQ ontology and HO its associated hypergraph
and S a signature. Algorithm 1 - Bvisit extracts a set of B-hyperpaths HBO
corresponding to the ⊥-locality module for S in O. Therefore, these modules also
guarantees safety, module coverage and module independence.

Theorem 3. Let O be a SROIQ ontology and HO its associated hypergraph
and S a signature. Algorithm 1 - Fvisit extracts a set of F -hyperpaths HFO
corresponding to a subset of the >-locality module for S in O.

Theorem 4. Let O be a SROIQ ontology and HO its associated hypergraph
and S a signature. Algorithm 2 extracts a frontier graph HBFO corresponding to
a subset of the ⊥>∗-locality module for S in O.

The module extracted in Theorem 3 is a subset of the >-locality module
for a given seed signature. It is as yet unclear whether or not these modules
provide all the model-theoretic properties associated with >-locality modules.
However, from the previous work done for the DL EL+ [10], it is evident that
these modules preserve all entailments for a given seed signature S. Further, they
also preserve and contain all justifications for any given entailment. Similarly,
the exact module theoretic properties of modules associated with frontier graphs
is something we are currently looking into.

6 Conclusion

We have introduced a normal form for any SROIQ ontology, as well as the
necessary algorithms in order to map any SROIQ ontology to a syntactic local-
ity preserving hypergraph. This mapping process can be accomplished in linear
time in the number of axioms with at most a linear increase in the number of
hyperedges in the hypergraph.

Standard path searching algorithms for hypergraphs may now be used to find:
(1) sets of B-hyperpaths — this is equivalent to finding ⊥-syntactical locality
modules; (2) sets of F -hyperpaths — these are subsets of >-locality modules,
and (3) frontier graphs — these are subsets of ⊥>∗ modules. Whilst the modules
associated with B-hyperpaths share all the module theoretic properties of ⊥-
locality modules, it is unclear at this point which module-theoretic properties
modules associated with F -hyperpaths and frontier graphs possess.

11

The ability to map SROIQ ontologies to hypergraphs, such that hyperedges
preserve syntactic locality conditions, allows us to investigate the relationship
between DL reasoning algorithms and the vast body of standard hypergraph
algorithms in greater depth.

Our primary focus for future research is to investigate and define the module-
theoretic properties of modules associated with F -hyperpaths and frontier graphs
as well as their relative performance with respect to existing locality methods.
Thereafter, we aim to expand our research and investigate other hypergraph
algorithms and how they may be applied to DL reasoning problems.

References

1. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incre-
mental classification of description logic ontologies. Tech. rep. (2012)

2. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
extracting modules from ontologies. In: Williamson, C., Zurko, M. (eds.) Proceed-
ings of the 16th International Conference on World Wide Web (WWW ’07). pp.
717–726. ACM, New York, NY, USA (2007)

3. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. Journal of Artificial Intelligence Research (JAIR) 31,
273–318 (2008)

4. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an
ontology: atomic decomposition and module count. In: O. Kutz, T.S. (ed.) Proc.
of WoMO-11. Frontiers in AI and Appl., vol. 230, pp. 25–39. IOS Press (2011)

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistable SROIQ. In: Do-
herty, P., Mylopoulos, J., Welty, C. (eds.) Proceedings of the Tenth International
Conference on Princleples of Knowledge Representation and Reasoning. pp. 57–67.
AAAI Press (2006)

6. Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga, R.: Safe
and economic re-use of ontologies: A logic-based methodology and tool support.
In: Proceedings of ESWC-08. vol. 5021 of LNCS, pp. 185–199 (2008)

7. Maier, F., Ma, Y., Hitzler, P.: Paraconsistent OWL and related logics. In: Janowicz,
K. (ed.) Semantic Web 2012. pp. 1–33. IOS Press (2012)

8. Nguyen, S., Pretolani, D., Markenzon, L.: On some path problems on oriented
hypergraphs. Theoretical Informatics and Applications 32(1-2-3), 1–20 (1998)

9. Nortjé, R.: Module extraction for inexpressive description logics. Master’s thesis,
University of South Africa (2011)

10. Nortjé, R., Britz, K., Meyer, T.: Bidirectional reachability-based modules. In: Pro-
ceedings of the 2011 International Workshop on Description Logics (DL2011).
CEUR Workshop Proceedings, CEUR-WS (2011), http://ceur-ws.org/

11. Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. Ph.D. thesis, Technical University
of Dresden (2009)

12. Thakur, M., Tripathi, R.: Complexity of linear connectivity problems in directed
hypergraphs. Linear Connectivity Conference pp. 1–12 (2001)

12

