Debugging Weighted Ontologies

Heiner Stuckenschmidt

University of Mannheim, Germany

Abstract. We present our work on debugging weighted ontologies. We define
this problem as computing a consistent subontology with a maximal sum of ax-
iom weights. We present a reformulation of the problem as finding the most prob-
able consistent ontology according to a log-linear model and show how existing
methods from probabilistic reasoning can be adapted to our problem. We close
with a discussion of the possible application of weighted ontology debugging to
web scale information extraction.

1 Motivation

Probably the most often quoted advantage of logic-based ontologies are the possibility
to check the model for different kinds of logical inconsistencies as possible symptoms
of modeling errors. Since the work of Schlohbach and Cornet [19] many researchers
have investigated the task of debugging description-logic ontologies, which dies not
only include the detection of logical inconsistency, but also the identifying minimal
sets of axioms causing it and removing axioms from the ontology to make it consistent
again (e.g. [18, 16,6, 8]).

While computing the cause of an inconsistency is relatively well understood and es-
tablished techniques from diagnostic reasoning like the hitting set algorithm have been
successfully applied and adapted to the problem of debugging ontologies, the decision
which axioms to discard to retain consistency is still a largely unsolved problem. The
classical solution used for instance in the field of believe revision is principle of mini-
mal change that prefers solutions that remove the least number of axioms (compare e.g.
[21]. While this approach has theoretical merits, it is not adequate for practical appli-
cations. For certain special cases such as debugging ontology mappings we can even
observe that the principle of minimal change will remove correct axioms in most cases
leaving incorrect ones in. As a consequence, researchers have focused on interactive
debugging methods where a human user decides which axioms to remove while being
supported by the debugging system [8, 10].

While interactive repair of ontologies is feasible when ontologies are rather small,
more recently researchers get interested in debugging ontologies that have been auto-
matically created from text or data sources. The resulting models are typically quite big
and contain a high number of inconsistencies. While many classical debugging tools
already have trouble in more classical settings as we have shown in our study on the
practical applicability of debugging [20], using these tools on sets of automatically gen-
erated axioms turns out to be a hopeless endeavor.

In this paper, we summarize work on a new approach to ontology debugging that
can be seen as a generalization of classical ontology debugging and that is also bet-
ter suited for the task of debugging large, highly inconsistent models. Our approach is

based on the idea that axioms in the ontology to be debugged have weights assigned
and the task is to remove axioms from this set such that the resulting model is consis-
tent and the sum of weights is maximal. The second part of this definition provides us
with an unambiguous criterion for selecting axioms to remove. Further, this definition
of debugging weighted ontologies is equivalent to computing the most likely model in
log-linear probabilistic models. We can use this correspondence to apply scalable infer-
ence mechanisms from the area of statistical relational learning to the task of ontology
debugging.

The remainder of the paper is structured as follows: we first introduce a rather
generic model of weighted ontologies that applies to different logical formalisms in-
cluding light weight description logics and explain the relation to log linear models. In
the second part of the paper, we discuss different different algorithms for debugging
weighted ontologies based on linear integer programming and on Markov Chain Monte
Carlo Sampling. We also discuss approach for scaling up these algorithms by distri-
bution and parallel processing. We close with a discussion of open issues and future
work.

2 Weighted Ontologies

2.1 Ontologies

We use a rather abstract ontology model that regards an ontology as a set of Axioms
O = {A;,---,A,}. We represent axioms as predicates over constants representing
classes, relations and instances. Existing representations of ontologies can be trans-
ferred into this representation by first normalizing the logical representation, eventually
introducing new concept constants and then translating normalized axioms into literals.
A complete translation for the logic ££ can be found in [13]. The following exam-
ple shows our representation of an ontology talking about philosophers and celestial
objects:

A; : type(Pluto, Philosopher) (1)
As : related(born — in, Pluto, Athens) 2)
As : domain(born — in, Person) 3)
Ay : type(Pluto, Dwar f Planet))
As : subconcept(Philosopher, Person) (5)
Ag : subconcept(Planet, CelestialObject) 6)
Az : subconcept(Dwar f Planet, Planet) @)
Ag : disjoint(CelestialObject, Person) (8)

Our model further assumes the existence of an entailment relation |= between sets
of Axioms. Often, the entailment relation can be computed using a finite set of deriva-
tion rules. This observation corresponds to the investigation of consequence driven rea-
soning for description logics. In particular, for any description logic supporting conse-
quence driven reasoning, we can compute the entailment relation between sets of using

derivation rules over the predicate representation. A correct and complete set of infer-
ence rules for ££ can be found in [13]. For our example, we assume the following
(incomplete set of) derivation rules for computing the entailment relation.

type(X, C) A subclass(C, D) + type(X, D))

subclass(C, D) A subclass(D, E) F subclass(C, E) (10)
domain(R,C) A related(X, R, Y) F type(X, C) (11)
type(X, C) A type(X, D) A disjoint(C,D) + L (12)
subclass(C, D) A disjoint(C,D) = L (13)

We include the L symbol for representing conflicts in the ontology. Abusing nota-
tion, we use L for any kind of conflicts we want to exclude from the model. Concerning
classical debugging the operator can be used to determine the existence of a logical in-
consistency as well as incoherent classes in the same framework. We could also include
domain-specific types of inconsistencies and detect them using the same algorithms as
for the logical inconsistencies.

I our model, the task of ontology debugging can now be defined as finding a minimal
subontology @’ C O such that O’ [~ L and there is no other subontology O’ C
O" with this property. In our example such a sub-ontology can be generated by either
removing axiom 1 and 2 or any of the axioms 3 to 8.

2.2 Weighted Axioms and log-linear Models

In our work, we consider cases, where not all axioms in an ontology have the same
status, but some are preferred over others. We model this preference by a simple weight
function w : O — RU {0} where R denotes all real numbers and the weight function
maps each axiom of an ontology either on a real number or on {co} if the axiom should
not be removed in any case. In the presence of a weight function, the notion of debug-
ging is slightly changed. It can now be phrased as the task of finding a sub ontology
O’ C O such that O" = 1 and the sum of the weights in the axioms is maximal:

> w(d) = > w(4),v0" O
A€’ Ajeor

Let us assume that the first two axioms in our example have been automatically
extracted while the other statements have been manually created by an expert. We
could model this situation by assigning a lower weight to the first two axioms and
higher weights to the other statements to indicate that we have more trust in the man-
ually created parts of the model. So we might define w(4;) = 2,i € {1,2} and
w(A;) = 5,1 < 2. In this case the only debugging of the resulting weighted ontology
is @' = {43, -, Ag} with a weight-sum of 30, whereas all other possible debuggings
have at most a weight sum of 29.

In our work, we exploit the duality of this definition of debugging with log-linear
models - probabilistic models where the a priori probabilities are given in terms of real-
valued weights that are treated as logarithms of the actual probability. Thus, computing

the joint probability of independent events is done by summing up the weights instead
of multiplying the probabilities. This means that the ontology with the highest weight
sum is the most probable ontology according to a log-linear model over the weights of
the axioms. In the case of only positive weights as in our example, the most probable
ontology is always the one that contains all axioms. If we, however, force the probability
of any sub ontology @’ |= L to be zero, computing the most probable ontology turns
out to be equivalent to computing a debugging as defined above. In particular, we define
the probability of a subontology as follows:

L exp Sow(Ay) | ifO B L
PO) =17 (A0}
0 otherwise

Using this definition, debuggings of an ontology are simply the results of argmax o, o (P(0’)).

3 Debugging Algorithms

Actually computing debuggings is quite challenging is requires a combination of logical
(for checking whether L follows from a subontology) and probabilitic (for computing
the probability of a model) inference. It turns out that naive approaches although they
work for some special cases such as debugging alignments between small ontologies
[9], fail to scale up to real world ontologies. At this point, we directly benefit from the
above explained duality of debugging and inference in log-linear models, because we
can build upon existing work in the area of probabilistic inference and design reasoning
methods that scale up to very large (weighted) knowledge bases.

In the following, we describe two directions of work on algorithms for efficient
debugging of weighted ontologies: the first one is based on a translation into an opti-
mization problem that can be computed by solving a linear integer program. This work
has already successfully been implemented in the ELOG reasoning system ! develop at
the university of Mannheim and is ready to use with OWL ontologies that have weights
assigned as annotation properties [14]. The second direction is based on the idea of
Sampling-based approximate inference that has the potential to scale to very large mod-
els. This work, that is based on Markov Chain Monte Carlo Sampling of ontologies has
so far mostly been investigated on a theoretical level. First experiments have been made
that show the potential of the method, but so far no stable reasoner is available.

3.1 Exact Inference using Linear Integer Programming

The first direction of work is based on the simple observation, that computing the most
probable model can be phrased as an optimization problem and represented in terms of a
linear integer programm. A linear integer program consists of an objective function that
consists of the sum of integer variables with weights that has to be maximized. Further,
side-conditions on the values of the variables can be stated in terms of linear inequalities
over the variables. As we are interested in the presence or absence of axioms in an

! http://code.google.com/p/elog-reasoner/

ontology, we only consider Variables that have values from {0, 1}. A simple example
of a linear integer program is maximize 0.6x; +1.0x5 +0.5z3, subjectto z; +z2 +
x3 < 1.2. The solution of the example is: 1 = 1,22 = 0,z3 = 1. Instantiating the
variables in the objective function with these values results in an objective value of 1.1.

The main task is now to find an optimal encoding of the problem into an integer
linear programme. Riedel has proposed such a translation as a basis for efficient inferene
in Markov logic [17]. As our representation of axioms as predicates and well as the
corresponding inference rules can be represented as a Markov logic model, we can use
the proposed translation as a basis for solving our problem. In particular, we can use the
following steps for translating an ontology and the corresponding deduction rules into
a linear integer programme:

replace non ground formulas with all possible groundings

Convert the resulting propositional knowledge base to conjunctive normal form
For each ground clause ¢ determine positive L™ (g) and negative L~ (g) literals.
Determine the objective function as sum over all ground clause variable z, and their
weights

5. For each ground clause with weight # oo add the following constraints:

Z x + Z (1—2) > 24

leL*(g) leL(yg)

Ll

z < 24,V1 € Lt (g)
(1—m) < z4,Vle L™ (g)

6. For each ground clause with weight = co add the following constraint

dom+ Y (l-wm) =1

leL*(g) leL(g)

7. Add the constraint z ;| = 0 to enforce that L is excluded from the model.

The solution of the corresponding debugging problem can be read from the solution
of the linear integer programme. Each axiom in the ontology corresponds to a variable
in the objective function, the solution of the debugging problem is the ontology that
results from excluding all axioms from the model whose value is O in the objective
function.

In our work [15] we have further optimized the translation procedure by translating
clauses that share literals into a single constraint with counting variables. This approach
has been shown to deliver a significant improvement for models with a high number of
constants as it exploits symmetries in the resulting ground formulas to avoid repeated
computations.

3.2 Approximate Inference using Markov-Chain Monte Carlo Sampling

While the ILP-based approach described above works well for medium sized knowledge-
based, it runs into problems for very large models. In particular, if we think about using
the methods on web scale, we quickly recognize that an optimal approach like the one
described above is bound to fail. In such situations, where optimal algorithms fail, we
can still use approximate inference methods for probabilistic models. A class of approx-
imate inference methods that turned out to apply to our problem is Markov Chain Monte
Carlo Sampling. In particular, we can adapt methods for sampling in dependent node
sets from hypergraphs for our problem. For this purpose, we interpret an ontology as a
hypergraph, where every axiom is a node in the hypergraph and nodes are connected by
a hyperedge iff they form a diagnosis (i.e. a minimal set of axioms from which L fol-
lows). A debugging of the ontology then corresponds to finding a maximal independent
node set with respect to the weights of the axioms. Such an independent node set can
now be determined by a Markov chain [7]. In [12] we proposed the following Markov
Chain for computing weight-optimal debuggings in the sense of this paper.

A markov chain is a stochastic process with discrete time steps that is memoryless
in the sense that its state at time t only depends on the state in t-1. Markov Chain
Monte Carlo Methods are a class of algorithms that sample a probability distribution
by constructing a Markov Chain that converges towards the desired distribution. We
construct a Markov chain whose states are axiom subsets of the original ontology. It
starts with an empty set of axioms and converges towards a state that corresponds to the
weight optimal debugging of the ontology. Let X () be the state of the Markov Chain
at time t, the state of the chain at time t+1 is computed as follows:

chose and Axiom A uniformly at random
if Ais in X(*) then remove it with probability W

— if A is not in X® and it is not in any diagnosis than add it with probability
exp(w(4))

(I+exp(w(A)))

if Aisnotin X® and itisin a diagnosis, then choose an other axiom from that

diagnosis as random and replace it with A with probability %

First experiments on the PROSPERA Dataset [11] indicate that the method works
well also on very large datasets that cannot be handled by optimal algorithms any more.

4 Conclusion: Debugging the Web

In this paper, we discussed the problem of debugging weighted ontologies. The problem
can be seen as a generalization of ontology debugging where we have additional infor-
mation about axiom preference in terms of weights assigned to axioms that can be used
to compute a consistent ontology with a maximal sum of weights. We discussed the re-
lation to computing the most probable consistent ontology using log-linear models and
showed how we can exploit existing work from the field of probabilistic inference to
efficiently compute debuggings. We believe that this method has a lot of potential and
a lot of applications, in particular with respect to improving the results of web-scale
information extraction.

As already indicated in the previous sections, our aim is to scale up the methods
as far as possible. The ultimate goal is to address the web as a source of universal
knowledge about the world. Recently a number of large scale knowledge extraction
projects have been launched including NELL [2] TEXTRUNNER [3] and Knowitnow
[1]. These projects extract more or less accurate facts from webpages building large
knowledge bases about the world. Despite the use of high end extarctoin methods, the
resulting models still contain mistakes and contradictions that need to be resolved to
have a reliable model of world knowledge. In principle, our methods are able to inte-
grate the results of these systems into a single, non conflicting model. For this purpose,
however, we have to solve two problems: the first is to make our methods work on the
scale of millions of facts as provided by these projects, further we have to model knowl-
edge about conflicts between different facts in terms of a background ontology. While
the first one is currently being addressed in terms of implementing the above mentioned
sampling approach on a hadoop-based distributed infrastructure, we address the second
problem by aligning the results of the extraction projects to the dbpedia ontology by
matching objects and relations. If successful, we can use existing work on enriching the
DBpedia ontology [5, 4] to determine logical inconsistencies.

Acknowledgement

The work summarized in this abstract has been joint work with Christian Meilicke,
Mathias Niepert and Jan Noessner

References

1. Michael J. Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni. Knowitnow:
Fast, scalable information extraction from the web. In Proceedings of the Conference on
Human Language Technology Conference and Conference on Empirical Methods in Natural
Language Processing (HLT-EMNLP), 2005.

2. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr, and T.M. Mitchell. Toward
an architecture for never-ending language learning. In Proceedings of the 24th Conference
on Artificial Intelligence (AAAI), page 13061313, 2010.

3. O. Etzioni, M. Banko, S. Soderland, and D.S. Weld. Open information extraction from the
web. Communications of the ACM, 51(12):68-74, 2008.

4. Daniel Fleischhacker and Johanna Vlker. Inductive learning of disjointness axioms. In On the
Move to Meaningful Internet Systems: OTM 2011 : Confederated International Conferences:
CooplS, DOA-SVI, and ODBASE 2011, Lecture Notes in Computer Science, pages 680—-697.
Springer, 2011.

5. Daniel Fleischhacker, Johanna Vlker, and Heiner Stuckenschmidt. Mining rdf data for prop-
erty axioms. In On the Move to Meaningful Internet Systems: OTM 2012 : Confederated
International Conferences: CooplS, DOA-SVI, and ODBASE 2012, Lecture notes in com-
puter science, pages 718-735. Springer, 2012.

6. Gerhard Friedrich and Kostyantyn Shchekotykhin. A general diagnosis method for ontolo-
gies. In Proceedings of 4th International Conference on Semantic Web (ISWC?05), pages
232-246, Galway, Ireland, 2005.

10.

11.

12.

13.

14.

16.

17.

18.

20.

21.

. M. Jerrum and A. Sinclair. The markov chain monte carlo method: an approach to approx-

imate counting and integration. In Approximation algorithms for NP-hard problems, pages
482-520. PWS Publishing, 1996.

. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca-Grau. Repairing unsat-

isfiable concepts in owl ontologies. In York Sure and John Domingue, editors, The Semantic
Web: Research and Applications, 3rd European Semantic Web Conference, ESWC 2006, vol-
ume 4011 of Lecture Notes in Computer Science, pages 170—184, Budva, Montenegro, June
2006.

. Christian Meilicke and Heiner Stuckenschmidt. Applying logical constraints to ontology

matching. In K1 2007: Advances in Artificial Intelligence : 30th Annual German Conference
on Al 2007.

Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Supporting manual map-
ping revision using logical reasoning. In Dieter Fox and Carla P. Gomes, editors, Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, Illinois, USA, July
2008. AAAI Press.

N. Nakashole, M. Theobald, and G. Weikum. Scalable knowledge harvesting with high
precision and high recall. In Proceedings of the 4th International Conference on Web Search
and Data Mining (WSDM), pages 227-236, 2011.

Mathias Niepert, Christian Meilicke, and Heiner Stuckenschmidt. Towards distributed
memc inference in probabilistic knowledge bases. In NAACL-HLT 2012 Joint Workshop
on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-
WEKEX), Montreal, 2012.

Mathias Niepert, Jan Noessner, and Heiner Stuckenschmidt. Log-linear description logics.
In Toby Walsh, editor, IJCAI, pages 2153-2158. ICAI/AAAL 2011.

Jan Noessner and Mathias Niepert. Elog: A probabilistic reasoner for owl el. In Lecture Notes
in Computer Science Web Reasoning and Rule Systems : 5th International Conference, RR
2011, pages 281-286, Galway, Ireland, 2011. Springer.

. Jan Noessner, Mathias Niepert, and Heiner Stuckenschmidt. Rockit: Rockit: Exploiting par-

allelism and symmetry for map inference in statistical relational models. In Proceedings of
the 27th Conference on Artificial Intelligence (AAAI), 2013.

Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging owl ontologies. In Proceedings
of the 14th international World Wide Web Conference, page 6337640, Chiba, Japan, 2005.
Sebastian Riedel. Improving the accuracy and efficiency of map inference for markov logic.
In David A. McAllester and Petri Myllymki, editors, UAI 2008, Proceedings of the 24th
Conference in Uncertainty in Artificial Intelligence, pages 468—475, Helsinki, Finland, July
9-12 2008. AUAI Press.

Stefan Schlobach. Diagnosing terminologies. In Proceedings of the 20th National Confer-
ence on Artificial Intelligence (AAAI-05), page 6707675, 2005.

. Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the debugging

of description logic terminologies. In Georg Gottlob and Toby Walsh, editors, Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, pages 355-362,
Acapulco, Mexico, August 2003. Morgan Kaufmann.

Heiner Stuckenschmidt. Debugging owl ontologies - a reality check. In Raul Garcia-Castro,
Asuncin Gmez-Prez, Charles J. Petrie, Emanuele Della Valle, Ulrich Kster, Michal Zaremba,
and M. Omair Shafiq, editors, Proceedings of the 6th International Workshop on Evaluation
of Ontology-based Tools and the Semantic Web Service Challenge (EON-SWSC-2008), vol-
ume 359 of CEUR Workshop Proceedings, Tenerife, Spain, June 2008. CEUR-WS.org.
Renata Wassermann. An algorithm for belief revision. In Proceedings of the Seventh Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR2000).
Morgan Kaufmann, 2000.

